More Examples of the Bright Ideas Time: The Big Question

This is such an exciting way of encouraging the pupils' thinking skills. It can seem a little scary as we, as teachers, do not know all the answers but the joy is in the finding out!

	The Big Question			
National	Prompt	Subject knowledge/ideas		
Curriculum				
	How do you know the	KS1/2: Whether or not something is alive and how it is possible to		
	person next to you is	know is one of the big ideas in science. This discussion will lead to an		
	alive?	exploration of the characteristics of living things.		
Sc2: Life	Is a tree alive?	KS1: It is harder for children to understand a plant is alive, as it does		
processes		not obviously move and certainly does not talk!		
& living	Is a flame alive?	KS2: A flame appears to exhibit many of the life processes:		
things		Nutrition - it uses fuel		
		Growth – fires become larger		
		Movement – flames flicker		
		Reproduction – flames can leap from one place to another		
		It produces 'waste' – ash and smoke		
		It needs oxygen		
		Of course, a flame is not living as it is not made up of cells and it is not		
		growing, reproducing or producing waste in a biological sense. This		
		can form the basis of a very interesting discussion.		
	I planted a tree in my	KS2: It is amazing to consider the fact that the mass of the tree has		
	garden 4 years ago. It	been produced as a result of photosynthesis. Pupils at Key Stage 2		
	now weighs 250kg more.	are not expected to understand the concept of photosynthesis but they		
	Where did this 250kg	are expected to understand 'the role of the leaf in producing new		
	come from?	material for growth'. It is a common misconception amongst children		
		and adults to think that the roots take in the food for the plant and this		
		is not helped by the fact that some fertilisers are labelled 'plant food'!		
		The roots take in the necessary minerals but the 'food' is provided by		
		the Sun's energy which is captured in the leaf and together with the		
		carbon dioxide and water forms the mass of the plant. The pupils		
		therefore need to understand that the light and water and air (the		
		carbon dioxide) are necessary for growth because the leaf 'processes'		
		these to form the mass of the plant.		

Sc3:	What are the properties	KS1/2: This is quite a challenging question - children often describe a
Materials	of a solid?	solid as hard and can then be shown a sponge and asked if that is
and their		then a liquid.
properties		It is worth pointing out that we tend to recognise quickly which
		materials are liquids and which are solids but we find it very hard to pin
		down how our brain carries out this categorisation.
	What are the properties	KS1/2: Children will often describe a liquid as wet but what exactly
	of a liquid?	does wet mean? They will tend to say that you can 'put your hand
		through a liquid' but then I can put my hand through sand in a sandpit.
		Children tend to be able to arrive at the concept of a solid having a
		fixed shape whilst a liquid will take the shape of its container. They
		may well lead them to point out that sand or flour will take the shape of
		its container. However, of course, one grain of sand will have a fixed
		shape.
		In scientific terms, the definitions can be made short and sharp:
		a solid has a fixed volume and a fixed shape;
		a liquid has a fixed volume and no fixed shape
	Where does a puddle go?	KS2: This is an example of evaporation, i.e. the change of state of the
		water in the puddle from a liquid to a gas. The liquid water in the
		puddle evaporates and becomes water vapour which is a gas.
		Evaporation is different from boiling! It takes place at a lower
		temperature and is much less vigorous. Evaporation takes place more
		rapidly when there is a large surface area so a puddle is ideal.
	Where does salt go when	KS2: When a solid dissolves, it appears to disappear but where has it
	it is dissolved in water?	gone? This can lead to the big idea of atoms as the solid breaks down
		into very, very small particles which are spread throughout the
		particles of the liquid. They are so small that they cannot be seen.
Sc4:	What can you see when	KS1: Being in pitch darkness, where a hand literally cannot be seen in
Physical	there is absolutely no	front of a face, brings home the concept that there needs to be a
processes	light?	source of light in order to see. This then leads on to the following
		question.
	Why do we see 'history'	KS2: We see the stars as they were when the light left them. This
	whenever we look at the	means that there is a slight chance that some of the stars that we see
	stars?	no longer exist. Since the light that enters our eyes left them
		thousands or millions of years ago, it is possible that some have
		undergone a catastrophic happening and no longer exist as stars. It is
		also salutary to consider the fact that when the light left some of these
		stars, dinosaurs existed on Earth. The light that enters our eyes from

	these stars has been travelling through space since the time of the
	dinosaurs & only now enters our eyes!
Why are insulators as	KS2: It is interesting to realise that electricity would be unusable if
important as conductors?	insulators did not exist, as well as conductors. Turning on any switch
	would a shocking experience!
Why do the Sun and the	KS2: The Sun appears the same size as the Moon because it is much
Moon look the same size	further away. In fact, the diameter of the Sun is 400 times the
in the sky?	diameter of the Moon but it is also 400 times further away. This is an
	amazing co-incidence which means that the disc of the Sun, as we
	see it from the Earth, is almost identical in size to the disc of the Moon
	in the sky. The Moon can therefore just cover the Sun and obscure it
	completely during a total eclipse.
What is between the	KS2: Admittedly, there are two other planets between them but these
Earth and the Sun?	are also relatively tiny and are in constant orbit around the Sun.
	Children tend to have quite a crowded picture of space and tend to
	think that there are other stars between the Earth and the Sun. They
	may also mention meteorites, asteroids etc. They will be very small
	amounts of matter but basically, there is just about nothing between
	the Sun and us. Nothingness is a very difficult concept to grasp.
Why don't we feel dizzy?	KS2: We teach children that we live on a spinning Earth. We are
	expected to believe that all this motion is going on and yet when we
	look out of the window, everything looks very still!
	It is equally interesting to ask adults the same question - a common
	reply is, 'We are moving so slowly that we cannot feel it.'
	If the size of the Earth is considered and the fact that it turns all the
	way around once every 24 hours, then it cannot be moving slowly —in
	fact, quite the reverse. The Earth is also moving on a huge orbit
	around the Sun once a year so it is, in fact, moving very fast indeed.
	The fact is that everything is moving with us and so we do not sense
	the motion. This is relativity! It is rather like being on a train at a station
	and the train next to you seems to move off. The only way to tell if it
	your train moving or the one next to you is to look at an external frame
	of reference – the station platform! If everything moves with you, e.g.
	being on a plane with the blinds down, there is no sense of being in
	motion, unless the plane changes its speed.